Special Topics in Cryptography

Mohammad Mahmoody

Problem set 1

- Will posted today
- You have till Thursday (1Feb) 6pm to submit it on Collab.

Last time

- A bird's eye view of the topics
- The Kerckhoffs's principle
- Caesar and Jefferson ciphers

Today

- Defining encryption formally (Secret key) Information theoretic (perfect) vs. computational secrecy

Defining secret-key encryption formally .en:k Encryption Scheme: 3 Algorithms KE 20/1 Key_length) -o(Key (k) key generation KE K. $E_{nc}(k,m) = c \epsilon$ $\int plaintext. m \epsilon M$ CE Encryption : ME M CEC $Dec(k,c) = m \in \mathcal{M}$ Decrypnin 3 D En((k,m)=C)KEK, mell: m=ḿ Dec (v, c) = m²
 Completeners Condition.

The setting

- Encryption happens just once (but maybe for a very long message).
- Enc and Dec both just take the secret key (no extra randomness)
- (We will use a more general definition later on..)

Defining Perfect Secrecy 1st try (semantic secrecy)

Idea: the ciphertext does not change what Eve knew about plaintext.

If Eve has some "uncertainty" E about M: it should not change after seeing ciphertext <u>C</u>

Probability (Basics)
Mapping P(.)
• Distributions and random variables

$$P_i = P_i[a_i]$$
: probability of selecting a_i : $P_i \in [0,1]$
 $P_i = P_i[a_i]$: probability of selecting a_i : $P_i \in [0,1]$
 $P_i = P_i[a_i]$: probability of selecting a_i : $P_i \in [0,1]$
 $P_i = P_i[a_i]$: probability of selecting a_i : $P_i \in [0,1]$
 $P_i = P_i[a_i]$: probability of selecting a_i : $P_i \in [0,1]$
 $P_i = P_i[a_i]$: probability of selecting a_i : $P_i \in [0,1]$
 $P_i = P_i[a_i]$: $P_i = 1$
 $P_i = P_i[a_i]$: $P_i = 1$
 $P_i = P_i[a_i] = P_i[a_i]$

 $if \forall (a,b) \in JZ$ P(rainy,NoTr)=0 $P[(\alpha,b)] = P_{\alpha}[\alpha] \cdot P_{2}[b]$ Probability (Basics) (No Traffic) - o We call P. & Pz independer 2 sunny, vainy, cloudy & Some-Traffi Conditional distributions, and independent random variables , to knowing $\Omega = \left(\prod_{i=1}^{n} \chi \Omega_{i} \right) = \left\{ \left(a, b \right) \mid a \in \mathbb{Z}, b \in \mathbb{Z} \right\}$ a does not chang is a dist over Ω : $P((a,b)) \rightarrow lo[1]$ the chance of if we pick (á,b) ↔ Cas a storandom variable) $\gamma_{1}(\alpha) = \gamma$ the chance of getting a = a'? is what ae 12 : L' prob. dit over D, $> \gamma(a,b)$ be SZ2 a from S2, and b from S2 think about Sampling independently.

Shannon's theorem: Perfect semantic secrecy requires "long" keys

Thm: if we encypt only one m & M. Kin mo
Using a keep k & E.K.
then achievit perfect secrety is mi
I mpossible if MI < Iml. mo
Proof: Lemma: if
$$\exists m_2 C_0: ciphe tex that C_0 Cannot be decrypted intoplaintext mo no matter what key k used.If perfect secrety to V Como = Ko Dec(Conko) = mo Control Control M. M.$$

Defining Perfect Secrecy, 2nd try (perfect indistinguishability)

• Idea: Eve cannot guess the message, even if she knows $m \in \{m_0, m_1\}$ Vm,m Security (Game: m, m e M Challenger m_m Adv. Def, for all ADV Peti for all ADV Pick befoult Pick key ketouit Pick key ketouit $get : C = Enc(m_2k)$

Perfect semantic secrecy and perfect indistinguishability... are equivalent!

Relaxing perfect indistinguishability : (statistical indistinguishability) -160 $\varepsilon = 2$ 1+*ɛ* • Idea: Eve cannot guess the message with probability even if she knows $m \in \{m_0, m_1\}$ Gan Def: V Adr Challery. w. Adv MI $P_{i}(U_{in}) \leq \frac{1+\epsilon}{2}$ beh.11 46 {-,14 Winsif b=b

Shannon's theorem:
Statistical indistinguishability ...still needs "long" keys!
Even
$$\mathcal{E} = \frac{1}{2}$$
 \longrightarrow $P_i \left[w_{in} \right] = \frac{1+\frac{1}{2}}{2} = \frac{3}{4}$
it sill inplie. $| key | > \frac{1ml}{2}$
strension
of periors
proof.

Computational Secrecy

How to rely on computational complexity?

We are OK if Adu can break the scheme it 2¹⁰⁰⁰ steps!

•